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A Local Method of Small Perturbations based on the Helmholtz Equation
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1 Introduction

Propagation of sound through the turbulent atmosphere is a statistical problem. The randomness of the

refractive index field causes sound pressure fluctuations. Although no general theory to predict sound

pressure statistics from given refractive index statistics exists, there are several approximate solutions to

the problem. The most common approximation is the parabolic equation method. Results obtained by

this method are restricted to small refractive index fluctuations and to small wave lengths. While the first

condition is generally met in the atmosphere, it is desirable to overcome the second. This paper presents

a generalization of the parabolic equation method with respect to the small wave length restriction.

2 Parabolic Equation Method

For the small wave lengthlimitI the Helmholtz equation can be converted intoa parabolicform (main

propagation direction_'z)/1/:

)2ik "+ + ÷ = 0 (1)

k = wave number; # = refractive index deviation; _ = complex sound pressure

The refractive index deviation p is considered as a random function. Therefore equation (1) is a stochastic

differential equation and the sound pressure _ becomes a random function, too. Stochastically this equation

is nonlinear, e.g. it contains a product of two random variables. For this reason the stochastic parabolic

equation cannot be solved exactly. Further approximations are necessary. Several mathematical tools

were applied to remove the stochastical nonlinearity, i.e. path integrals/2/, functional derivatives/3/,

perturbation expansion methods/1/. Despite approximations used in the calculations looking different,
the results are all the same.

The physical meaning of all these approximations becomes evident in the local method of small perturbations

/1/. By this method the scattering volume is divided into slabs perpendicular to the main propagation

direction. Each slab is chosen as thin as required by the validity limit of the first order perturbation

expansion term (single scattering approximation, Born approximation). This distance clearly depends on

the strength of the refractive index fluctuations. If these fluctuations are sufficiently small, the slabs are

much thicker than one correlation length of the random medium. Therefore the slabs can be regarded as

uncorrelated. Based on both assumptions - small refractive index fluctuations and a small wave length

compared to the correlation length - the statistical independence of subsequent slabs can be proofed

mathematically. Wave propagation through random media is described here as a Markov process.

1The wave length must be small compaxed to the size of a typical inhomogeneity of the medium. In statistical terms this
size ia expressed by the correlation length of the refractive index autocorrelation- function.
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As a consequence of the Markov property slabs of finite thickness are no longer necessary. This results in

a differential equation for the mean sound pressure which is linear in the stochastical sense as well2/1/:

2ik + _ + _ + 2ik_

< _2 > k2 1
Or--

1 = correlation length

Equation (2) can be solved easily:

< _(_ >= o (2)

(3)

< ,/,(r-)>= ¢,oCr-)exp{-o,z} (4)

_o = freepropagated incident wave

The mean complex sound pressure decreases exponentially while the wave propagates through the random

medium. This is an effect of decorrelation of the sound wave due to phase fluctuations. Different members

of the statistical assembly interfere destructively because of their different phases.

The validity of result (4) - and of any other result obtained by the parabolic equation method - is restricted

first by the validity of the parabolic wave equation (1) and second by the validity of the Markov assumption.

Necessary conditions are the smallness of refractive index fluctuations and the smallness of the wave length

(compared with the correlation length). In the next section the first condition is also assumed to be

true. The small wave length assumption, however, will be replaced by the weaker condition of negligible

backscattering. This will lead to a generalized Markov process and, consequently, to generalized results

with respect to the wave length - correlation length ratio.

3 Generalized Local Method of Small Perturbations

While generalizing the parabolic equation method the main idea of the local method of small perturbations

will be retained. The refractive index fluctuations are assumed to be small enough to justify the application

of a single scattering approximation within a distance Az in the scattering volume which is large compared

to the correlation length. Again the scattering volume is divided into slabs of this size. Therefore subsequent

slabs are uncorrelated as well. But contrary to the parabolic equation method the contribution of one slab

will not be calculated from the parabolic equation but from the Helmholtz equation:

"tA+ k2(; + j,(r-))) ,,Z,(r-)= 0

A = Laplace operator

Neglectingbackscatterings yieldsa differenceequationfor the mean sound pressure:

(5)

< _b(./n,nAz) >---- Go + < _(./n-1, (n- 1)Az) > (6)

2It is possible to derive similar equations for the higher statistical moments of _b by the parabolic equation method, too.

Only the first moment equation and its solution are presented here in order to compare them with the generalised results
derived in section 3 of this paper. The decorrelation coeffecient a is calculated for an exponential autocorrelation function for
comparison, too.

aNeglecting of backecattering is not an assumption of the parabolic equation method but a consequence of the small wave

length limit. The parabolic equation implies that there are small scattering angles only and no backscattering at all.
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= (z,y); n -_ numberofslab

A A

Go is the integral operator of the homogeneous Helmholtz equation (/_ = O, free propagation) and S is

an integral operator for the scattering within one slab. Since double scattering is the lowest order non-
A

vanishing term, the kernel of S contains the autocorrelation function of the refractive index field:

s (_,_ < _(_ >-- -k 4 ¢ VGC_,.,,¢)G(¢,_< _(¢)_(_ > < _(_ > (7)

G = Greens function of the Helmholtz equation

The solving of equation (6) is somewhat different from that of the related parabolic equation problem.

Here no wave length approximation helps to calculate the integrals. But for the case of a homogeneous

refractive index autocorrelation function, equation (7) becomes a convolution product. It can be Fourier-
A A

transformed with respect to the variable f, and this operation turns the operators S and Go into simple

functions S and G0. In the Fourier representation equation (6) reads:

(_.,_....)

= 2-dimensional spatial frequency

By Fourier-transformation the _integrations are alrea_ly performed and only the z-integrations axe left.

They can be performed, too, if the z-dependence of the medium autocorrelation function is known. For

the sake of simplicity this dependence is assumed to be exponential 4. After z-integration the scattering

contribution of one slab is seen to be proportional to the slabs thickness As. Therefore equation (8) can

be written as (S = _ Az):

(_.(_- 1)_z)

The effect of all slabs is obtained by iteration:

> (9)

Regarding a sufficiently large number of slabs yields (z = n Az):

(10)

<_ (_,z)>=_0 (_,z)exp{; (e)z)

For the special case of an isotropic exponential autocorrelation function _ becomes:

(11)

< _ > k 4

(_) -- 4aalCal - a) (12)

a= _ - _2 , a, = _/(Ic + i/l) 2 - _ (13)

To compare (11 ) and (12) with the corresponding parabolic equation method results (4 ) and ( 3 ), the incident

wave _b0 is assumed to be a plane one. Then the Fourier-transformation of (11) results in:

4For more complicated functions the s-integration can be performed numerically.
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< _C_ >= _o(_ exp{ "s (o)z} (14)

< l_2 > kZl (ikl - kZl z) (15)
(0) -- 4 (1 Jr kZl z)

The real part of _(0) describes the decorrelation of the sound wave. It is a more general expression than

(3) - only in the small wave length limit they are equal. Because of _(0) being a complex number, a second

effect is predicted by this method, which cannot be seen in the parabolic results. The imaginary part

is a stochastic correction to the wave number k due to an increase of the mean propagation distance in

the random medium. Only in the small wave length limit the scattering angles are small and the mean

propagation distance corresponds to the z-extension of the scattering volume.

4 Conclusions

A generalized form of the local method of small perturbations has been presented in this paper. Working

directly from the Helmholtz equation instead of the parabolic equation the small angle scattering method

was replaced by a forward scattering method. By this method only one result was derived here: The first

statistical moment of an incident plane wave scattered by a very weakly statistical homogeneous random

medium with an exponential autocorrelation function. This result shows corrections to the corresponding

parabolic equation method result.

It is possible to apply the method to more complicated problems, i.e. a difference equation for the second

statistical moment can be derived by the same idea.

If the medium fluctuations become stronger, the thickness of one slab decreases. The slabs might be thicker

than the correlation length, but not as much as assumed before. Then correlations between two slabs have

to be taken into account. This leads to difference equations which connect statistical moments not only

from one slab to the following, but to the next following, too.

The most valuable advantage of this method might be its suitability for numerical calculations. For any gi-

ven medium autocorrelation function the scattering function _ can be obtained by Fourier-transformation.

The incident wave is also Fourier-transformed. Then the algorithm given by equation (9) is applied iterati-

vely until the desired propagation distance is covered. The final result is obtained by Fourier-transformation

again.

The authorwishesto thank Prof.K. Haubold, Prof. V. Mellert,Dr. M. Schultz-vonGlahn and A. Sillfor

the valuablediscussionsduring the whole work.
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